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I. Introduction

HE use of solar electric propulsion (SEP) technology is now a

realistic option for designing trajectories for interplanetary
missions, whereas solar sail technology is currently under develop-
ment. This paper covers the results of a study on displaced periodic
orbits in the Earth-Moon system, in which the third body uses a
hybrid solar sail. The hybrid sail model is composed of two low-
thrust propulsion systems, namely a solar sail and SEP.

A solar sail is propelled by reflecting solar photons, transforming
the momentum of the photons into a propulsive force. Solar sail
technology appears to be a promising form of advanced spacecraft
propulsion that can enable exciting new space science mission con-
cepts, such as solar system exploration and deep space observation.
This form of propulsion can, in principle, provide energy changes
greater than are possible with either ion or chemical propellants.
Solar sails can also be used to maintain highly non-Keplerian orbits,
such as closed orbits displaced high above the ecliptic plane (see
Mclnnes [1], Waters and McInnes [2], and Simo and Mclnnes [3]).
Solar sails are especially suited for such non-Keplerian orbits
because they can apply a propulsive force continuously over long
periods. In such trajectories, a sail can be used as a communication
satellite for high latitudes. For example, the orbital plane of the sail
can be displaced above the orbital plane of the Earth, so that the sail
can stay fixed above the Earth at some distance, if the orbital periods
are equal. McInnes [4] investigated a new family of displaced solar
sail orbits near the Earth—-Moon libration points. Displaced orbits
have more recently been developed by Ozimek et al. [5] using
collocation methods. In Baoyin and McInnes [6-8] and McInnes
[4,9], the authors describe new orbits that are associated with
artificial Lagrange points in the Earth—Sun system. These artificial
equilibria have potential applications for future space physics and
Earth observation missions. In Mclnnes et al. [10], the authors
investigate large new families of solar sail orbits, such as Sun-
centered halo-type trajectories, with the sail executing a circular orbit
of a chosen period above the ecliptic plane.

The idea of combining a solar sail with an auxiliary SEP system
to obtain a hybrid sail system is important due to the challenges of
performing complex missions (see Leipold and Gotz [11], Mengali
and Quarta [12], Dachwald [13], and Baig and Mclnnes [14]). The
SEP system possesses a high specific impulse (I, ~ 3000 s). SEP
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consumes propellant and decreases the mass of the spacecraft,
whereas the solar sail does not consume any propellant. This form of
propulsion is useful for some high energy missions but, unlike solar
sails, they have a finite AV capability, which makes them unsuitable
for missions for which a non-Keplerian orbit has to be maintained
over indefinite periods of time.

Orbits around the colinear libration points of the Earth—-Moon
system are of great interest, because their unique positions are
advantageous for several important applications in space mission
design (see, e.g., Szebehely [15], Farquhar [16], Roy [17], Vonbun
[18], Thurman and Worfolk [19], Gémez et al. [20,21], Breakwell
and Brown [22], Richardson [23], Howell [24], and Howell and
Marchand [25]). Such orbits cannot be maintained without active
control due to their instability (see Breakwell and Brown [22],
Richardson [23], Howell [24], and Howell and Marchand [25]). If the
orbit maintains visibility from Earth, a spacecraft on it (near the L,
point) can be used to provide communications between the equatorial
regions of the Earth and the lunar poles. Moreover, if another com-
munications satellite is located at the L, point, there could be con-
tinuous communications coverage between the equatorial region of
the Earth and the entire lunar surface (see Farquhar [26] and Farquhar
and Kamel [27]).

This paper investigates displaced periodic orbits at a linear order
in the circular restricted Earth-Moon system, for which the third
massless body uses a hybrid of a solar sail and an SEP system. In
particular, periodic orbits in the vicinity of the Lagrange points in
the Earth—-Moon system will be explored, along with their appli-
cations. First, we describe the dynamic model of the hybrid sail. The
first-order approximation is derived for the linearized equations of
motion. Then, a feedback linearization control scheme (see Slotine
and Li [28]) is proposed and implemented. The main idea of this
approach is to cancel the nonlinearities and to impose desired linear
dynamics satisfied by the solar sail. We then select the SEP control,
which takes into consideration the nonlinearity cancellation and the
stabilizing linear control. When the control is applied to the non-
linear system, asymptotic stability is achieved. This provides the key
advantage that the displacement distance of the hybrid sail is then
constant. A constant displacement distance of 1750 km has been
considered for the simulations. The displaced orbits found by
Ozimek et al. [5] show large excursions in the displacement
distance. In practice, a constant displacement distance may lead to
easier tracking from the lunar surface for communications appli-
cations. Finally, we evaluate the performance of the hybrid sail
approach.

II. System Model

In this work, m, represents the larger primary (Earth) and m,
represents the smaller primary (Moon), and we will be concerned
with the motion of a hybrid sail that has negligible mass. It is always
assumed that the two more massive bodies are moving in circular
orbits with constant angular velocity w about their common center of
mass, and the mass of the third body is too small to affect the motion
of the two more massive bodies. The unit mass is taken to be the total
mass of the system (m, + m,), and the unit of length is chosen to be
the constant separation R* between m; and m,. The time unit is
defined, such that m, orbits around m; in time 2. Under these
considerations, the masses of the primaries in the normalized system
of units are m; = 1 — p and m, = w, with u = m,/(m; + m,) (see
Fig. 1a). Thus, in the Earth-Moon system, the nondimensional unit
acceleration is a,.; = w*R* = 2.7307 mm/s>, where the Earth—
Moon distance R* = 384,400 km. The dashed linein Fig. lais aline
parallel to the Sun-line direction.
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Fig. 1 System model: a) schematic geometry of the hybrid sail in the Earth—-Moon circular restricted three-body problem; and b) angle y between the
hybrid sail surface normal r and the Sun-line direction S, and SEP thrust vector direction m.

A. Equations of Motions
The nondimensional equation of motion of a hybrid sail [14] in the

rotating frame of reference is described by

d2

F—i—Zw ><—+VU(r)_aS+aSEP (1)
where @ = wZ (Z is a unit vector pointing in the direction z) is the
angular velocity vector of the rotating frame and r is the position
vector of the hybrid sail relative to the center of mass of the two
primaries. We will not consider the small annual changes in the
inclination of the Sun line with respect to the plane of the system. The
three-body gravitational potential U(r), the solar radiation pressure
acceleration ag, and the nondimensional acceleration due to the SEP
thruster aggp are defined by

1 1—
Ulr) = —[Elw xrf? +r—“+ﬁ}, ag=ay(S-n)’n (2)

1 r

a spp = dggpM 3)
where = 0.1215 is the mass ratio for the Earth—-Moon system. The
hybrid sail position vectors with regard to m; and m,, respectively
(see Fig. La), are ry =[x + . y, I’ andr, =[x — (1 — ). y. 2l
ay is the magnitude of the solar radiation pressure acceleration
exerted on the hybrid sail, and the unit vector n denotes the thrust
direction; aggp is the acceleration from the SEP system, and the
unit vector m denotes the thrust direction. A constant displacement
distance of 1750 km has been imposed, considering a characteristic
acceleration of a, = 0.10 mm/s® for the simulations. The sail is
oriented, such that it is always directed along the Sun line S and
pitched at an angle y to provide a constant out-of-plane force. The
unit normal to the hybrid sail surface n and the Sun-line direction are
given by

sin() " @)

n =[cos(y)cos(w,t) —cos(y)sin(w,?)

S =[cos(w,t) —sin(w,?) 0] )

where o, = 0.923 is the angular rate of the Sun line in the corotating
frame in a dimensionless synodic coordinate system.

B. Linearized System

‘We now want to investigate the dynamics of the hybrid sail in the
neighborhood of the libration points. We denote the coordinates
of the equilibrium point as r;, = (x;,, y.,, z1,), withi=1, ---, 5.
Let a small displacement in r; be ér, such that r — r; + ér. The
equations for the hybrid sail can then be written as

ds dér
C 20 x X4 VUG, + 6r)
dr dr
=ag(r, + 6r) + aggp(r, + 0r) (6)
and retaining only the first-order term in &r = [8x, &y, §y]” in a

Taylor series expansion, the gradient of the potential and the acceler-
ation can be expressed as

YU(r, + 6r) = VU(r,) + av;Jr O o @
S(r) 2

ag(r, +0r)=ag(r,) + or + O(6r?) ®)

asen(ry + ) = aseatr) + SO 506y )

It is assumed that VU(r;) = 0, and the accelerations as and aggp
are constant with respect to the small displacement ér, so that

das(r) =0 (10)
or r=ry,

8aSEP(r) =0 (1 1)
ar r=rp,

The linear variational system associated with the libration points
at r; can be determined through a Taylor series expansion by sub-
stituting Egs. (7-9) into Eq. (6), so that

2 dé
dor + 2w X—r—K5r—as(rL)+aSEP(rL) 12)
dr? dr
where the matrix K is defined as
A%
K:—[ u(r) } (13)
or r=ry

Using matrix notation, the linearized equation about the libration
point [Eq. (12)] can be represented by the inhomogeneous linear
system X = AX + b(¢), where the state vector X = (§r, 6)7 and for
which b(r) (a 6 x 1 vector) is equal to the sum of the control
accelerations of the sail and the SEP.
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The Jacobian matrix A has the general form

_ 03 13
A_(K Q) (14)

where I; is an identity matrix, and

0 20
Q=|-2 00 (15)
0 0 0

By making the transformation r — r; + ér and retaining only the
first-order term in §r = (£, 7, ¢) in a Taylor series expansion where
(&, n, {) are axes attached to the libration point (as shown in Fig. 1a),
the linearized nondimensional equations of motion relative to the
colinear libration points can be written as

E— 20— U%E= a; + ase, (16)
i + 26 — U0 = a, + asge, (17)
E—ngé':a;‘*‘asmc (18)

where Uy, Uy, and U?, are the partial derivatives of the gravitational
potential evaluated at the colinear libration point, and the solar sail
acceleration is defined in terms of three auxiliary variables ag, a,,
and a;.

Again, the sail attitude is fixed, such that the sail normal vector n,
which is the unit vector that is perpendicular to the sail surface,
always points along the direction of the Sun line with the following
constraint: S - n > 0. Its direction is described by the pitch angle y
relative to the Sun line, which represents the sail attitude.

Substituting Egs. (4) and (3) into Eq. (2), the solar sail acceleration
components are therefore given by

ag = agy cos(w, 1)cos’(y) (19)
a, = —ay sin(w, r)cos*(y) (20)
a; = apcos?(y) sin(y) @0

where a, is the characteristic acceleration. The SEP acceleration
components aggp are used for feedback control as described later.

By taking aggp = O (pure sail at linear order), Eqs. (16-18) have a
simple periodic solution with a constant out-of-plane displacement
of the form:

£(1) = &) cos(w, 1) (22)
n(t) = no sin(w, 1) (23)
HOEXY (24)

By inserting Eqs. (22) and (23) into the differential Eqs. (16) and
(17), with aggp = 0, we obtain the linear system in &, and 7,:

(U3 — 02)E) — 20,19 = agcos’ (y)

—2w,& + (U9, — w2)ny = —agcos’(y) (25)
Then, the amplitudes &, and 7, are given by
(U3, — w3 — 20, )cos*(y)

U, = ?)(U3, — ?) — 4a?

& = (26)

(UL + 6k 4 20,)008'()
o= 40 e, — ) (U, — ) — 402

@7
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and we have the equality

& _ wl + 2w, — U3, 28)
n —w:—2w,+ U,

Then, with condition (28), Egs. (22-24) will be used as a reference
trajectory for the control analysis in the following sections. By
applying a Laplace transform, the uncoupled out-of-plane { motion
defined by Eq. (18) can be expressed as (see Simo and McInnes [29]
for a detailed description)

§o = ageos(y) sin(y) |UZ| ™! (29)

Furthermore, the out-of-plane distance can be maximized by an
optimal choice of the sail pitch angle, determined by

diycosz()/) sin(y) ~ =0 (30)

*

y* =35.264 deg 31)

III. Tracking by Feedback Linearization
A. Description

Linearization by feedback is a well-known approach to control
nonlinear systems. This method transforms a nonlinear state-space
model into a new coordinate system, for which the nonlinearities can
be cancelled by feedback. It is a way of transforming system models
into equivalent models of simpler form. For example, a change of
variables Z = ®(X) is used to transform the state equation from the
X coordinates to the Z coordinates, for which the map ®(.) must be
invertible, such that X = ®~'(Z) for Z € ®(D), where D is the
domain of ®. Furthermore, the derivatives of X and Z should be
continuous, and therefore the map ® and its inverse ®~!(.) are
continuously differentiable. Such a map is a diffeomorphism and can
be viewed as a generalization of the coordinate transformation.

B. Objectives

Given the nonlinear system X = f(X, X) + u, the problem of
feedback linearization consists of finding, if possible, a change of
coordinates of the form Z = ®(X) and a static state feedback control
u = (X, v), such that the new control input v satisfies a linear time-
invariant relation Z = AZ + Bv, where the pair (A, B) is con-
trollable. This technique is completely different from a Jacobian
linearization, on which linear control is based. From Eq. (1), the
motion of the hybrid solar sail in the circular restricted three-body
problem (CRTBP) is described by the scalar equations in the form:

=204 (g, +5 - (1 - P IER

(i, ) -1+p
—pe TR

r
. . 1—
n=—2$+n—( 3“+ﬂ3)n+an+un (33)
r r
. 1—
§=—( 3#+ﬁ3)§+a;+u§ (34
r r
where the vector
w(t)=[us u, ul 35)

is the applied control acceleration due to the SEP thruster, such that
A
u(r) = agep.
To develop a feedback linearization scheme, the motion of the
hybrid solar sail moving in the CRTBP is separated into linear and
nonlinear components, such that
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g = fls\lonlinear + fiinear + ag + Ug (36)
ﬁ = flyzlonlinear + fI,iinear + an + un (37)
§ = fIionlinear + fEinear + ag + Ug (38)

where the f functions are defined as the linear and the nonlinear terms
in Egs. (32-34)

G+ +p G, +H-1+p
A

. l—p  p
fIE‘inear = 27/ + (xL, + s)’ fglonlinear = _( r? + 72)7}

fIS\Ionlinear = _(1 - /'L)

. l—p
flriinear = _25 + 7, fIZ\Ionlinear = _( 3 + ?){

r r;

fI{inear =0 (39)

with =\, +O+ P+ +E and n=

G, +9 =1+ uP + 72 + 2,
The solar sail acceleration components are given in Egs. (19-21).
We then select the SEP control u(¢), such that
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u()=|u, | =U@+ua@® (40)
U
where

P

(xr, +8) — (1 — ) St ity

U@n=- —(H 40— Usn
(4l Usg
(41)

is the canceling term, and #(z) is the stabilizing term.
The Egs. (32-34) then become

E = 21) + U%E + ag cos(w, 1)cos* () + ii; (42)
ii=—26+ Uon — ag sin(w, 1)cos*(y) + i, 43)
¢ = U%¢ + ageos(y) sin(y) + ii; (44)

By removing the nonlinear dynamics from the system, the control
acceleration vector #(¢) is determined, such that the desired response
characteristics of the linear time-invariant dynamics are produced,
and so Eqgs. (42-44) are identical to the linear system defined by

Ué[mm/sz]

L L L L L t[days]
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-0.006
-0.008
-0.010
-0.012

-0.014

Uy [mmy/s?]
0.0015p

0.0010F

0.0005 |

/\ L L t[days]

Ue [mm/s?]
0.0004 +

0.0002 -

L L L L L t[days]

T

b)

Fig. 2 Evaluation of hybrid sail performance: a) acceleration derived from the solar sail about the L, point, and b) acceleration derived from the SEP

thruster about the L, point.
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Eqgs. (16-18). In particular, it can be ensured that the displacement and so, we have
distance of the periodic orbit is constant, which provides key . . .
advantages for lunar polar telecommunications. u(t) =—f(x, X) + Xc(t) — 1€ — Aye (53)
. . where
IV. Tracking a Reference Trajectory :
A. Linear Feedback Control JNontinear
: : : F=1 Fiow (54)
Let us consider a nonlinear system described by -flc\fonlmear
Nonlinear

X=f(x,x)+u 45)
and —A,é — A,e is the stabilizing term.
where x € R? is the position. Let e(f) = x(f) — x.;(t) denote the
position error relative to some reference solution, for which the B. Trajectory Tracking

reference trajectory Consider the system given by Eq. (45), for which our objective is

_ T to make the output x € R3 track a desired trajecto iven by the

Frer(D) =[Gt Teer er] (46) reference trajectgry X..r € R? while keeping tlge po?i/ti%n bour}llded.
Therefore, we want to find a control law for the input # € R?, such
that starting from any initial position in a domain D C R, the
&t () = & cos(w, 1) 47 tracking error e(f) = x(1) — x,¢(f) goes to zero. Hence, asymptotic
tracking will be achieved if we design a state feedback control law to

ensure that e(7) is bounded and converges to zero as ¢ tends to infinity.

is given by the analytical solution

Mret (1) = 1o sin(w, 1) (48) Thus, the control law
u=-re—he (55)
;rcf(t) = é‘() (49) : :
. . . yields the tracking error equation
We then differentiate e(¢) until the control appears, so that
é+X1eé+re=0 (56)
e (1) = x(1) — X (1) (50)
where A; and A, are chosen positive constants.
€(1) = X(1) — Xper (1) (D
V. Evaluation of Hybrid Sail Performance
é(t) = X(1) — Xper (1) (52) A. Evaluation
In this section, we investigate the performance of the hybrid sail
=f(x, %) +u—X%(0) system, constituted by a solar sail combined with SEP. The simul-
. ation was performed around the colinear libration point L, for a
=—he—Ae period of one month. Thus, the control acceleration effort U(t)
e[km]
en[km]
t[days]
-100
-200
-300
-400
t[days] -500
a) b)

er[km]

150

100
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©)
Fig. 3 Position error components [a), b), and ¢)] about the L, point with e(0) = (28.26, — 552.52, 175)T km, respectively (critically damped motion).
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Table 1 Summary of Parameters

Parameter Description Value
m;, kg Initial mass 500
Iy, s Specific impulse 3000
AVigas,m/s  Total AV over 5 years 1536
Mpyrops KE Propellant mass consumed 25

required to track the reference orbit while rejecting the nonlinearities
varies up to 0.014 mm/s? about the L, point. The control acceler-
ations are continuous smooth signals. The acceleration derived from
the solar sail (denoted by ag, a,, and a;) is plotted in terms of
components for one-month orbits (in Fig. 2a) about L,, and the SEP
acceleration components appear (in Fig. 2b) about L,. The control
acceleration effort derived from the thruster (denoted by U, U,,, and
Uy) is of the order of 1073~10~* mm/s?, whereas the acceleration
derived from the solar sail is approximately 10~2 mm/s2. The small
control acceleration from the SEP thruster is then applied to ensure
that the displacement of the periodic orbit is constant. The solar sail
provides a constant out-of-plane force. Figure 3 (critically damped
motion) illustrates the position error components, denoted by e [
and e; under the nonlinear control and the SEP thruster around L,.
These figures show that the motion is bounded and periodic. This
observation implies that the augmented thrust acceleration ensures a
constant displacement orbit.

The parameters of the reference trajectory (about L,) used for
the simulations are summarized as follows: &, =282.613 km,
Mo = —5525.23 km, {, = 1750 km, and a, = 0.10 mms~2.

B. Propellant Usage

Propellant usage for the SEP thruster is proportional to the total
AV, which is the integration over the time of the magnitude of the
control acceleration produced by using the SEP thruster, so that

27/ W,
AV:/ lu| dt (57)
0

The total AVr,, over a5 year mission is given by
AVyoa = AV per orbit X no (58)

where no is the total number of orbits. Once the total AV is com-
puted, the propellant usage can be found using the rocket equation.

Let us define the mass m of the system at a time ¢, as a function of
the initial mass m;, AV and the effective exhaust velocity v, = I, - g

m=m;e 2V/¢ (59)

The mass of propellant is then the difference between the initial and
the final masses:

Moy = i —m = (1 = ¢Vl 1) (60)

where I, is the specific impulse (~3000 s for an electric thruster).

Assuming a specific impulse of /i, = 3000 s and an initial mass of
m; = 500 kg, we have the average AV per orbit of approximately
23 m/s for motion about L,. Then, the total AV per orbitover 5 years
is 1536 m/s. The consumed propellant mass is then m1,,,, = 25 kg.
The parameters are summarized in Table 1.

VI. Conclusions

A hybrid concept for displaced periodic orbits in the Earth-Moon
system has been developed. A feedback linearization was used to
perform stabilization and trajectory tracking for the nonlinear sys-
tem. The idea of this control is to transform a given nonlinear system
into a linear system by use of a nonlinear coordinate transformation
and nonlinear feedback. The augmented thrust acceleration is then
applied to ensure a constant displacement periodic orbit, which
provides key advantages for lunar polar telecommunications. A
stabilizing approach is then introduced to increase the damping in

ENGINEERING NOTES

the system and to allow a higher gain in the controller. Theoretical
and simulation results show good performance, with modest
propellant mass requirements.
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