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I. Introduction

T HE use of solar electric propulsion (SEP) technology is now a
realistic option for designing trajectories for interplanetary

missions, whereas solar sail technology is currently under develop-
ment. This paper covers the results of a study on displaced periodic
orbits in the Earth–Moon system, in which the third body uses a
hybrid solar sail. The hybrid sail model is composed of two low-
thrust propulsion systems, namely a solar sail and SEP.

A solar sail is propelled by reflecting solar photons, transforming
the momentum of the photons into a propulsive force. Solar sail
technology appears to be a promising form of advanced spacecraft
propulsion that can enable exciting new space science mission con-
cepts, such as solar system exploration and deep space observation.
This form of propulsion can, in principle, provide energy changes
greater than are possible with either ion or chemical propellants.
Solar sails can also be used to maintain highly non-Keplerian orbits,
such as closed orbits displaced high above the ecliptic plane (see
McInnes [1], Waters and McInnes [2], and Simo and McInnes [3]).
Solar sails are especially suited for such non-Keplerian orbits
because they can apply a propulsive force continuously over long
periods. In such trajectories, a sail can be used as a communication
satellite for high latitudes. For example, the orbital plane of the sail
can be displaced above the orbital plane of the Earth, so that the sail
can stay fixed above the Earth at some distance, if the orbital periods
are equal. McInnes [4] investigated a new family of displaced solar
sail orbits near the Earth–Moon libration points. Displaced orbits
have more recently been developed by Ozimek et al. [5] using
collocation methods. In Baoyin and McInnes [6–8] and McInnes
[4,9], the authors describe new orbits that are associated with
artificial Lagrange points in the Earth–Sun system. These artificial
equilibria have potential applications for future space physics and
Earth observation missions. In McInnes et al. [10], the authors
investigate large new families of solar sail orbits, such as Sun-
centered halo-type trajectories, with the sail executing a circular orbit
of a chosen period above the ecliptic plane.

The idea of combining a solar sail with an auxiliary SEP system
to obtain a hybrid sail system is important due to the challenges of
performing complex missions (see Leipold and Götz [11], Mengali
and Quarta [12], Dachwald [13], and Baig and McInnes [14]). The
SEP system possesses a high specific impulse (Isp � 3000 s). SEP

consumes propellant and decreases the mass of the spacecraft,
whereas the solar sail does not consume any propellant. This form of
propulsion is useful for some high energy missions but, unlike solar
sails, they have a finite�V capability, which makes them unsuitable
for missions for which a non-Keplerian orbit has to be maintained
over indefinite periods of time.

Orbits around the colinear libration points of the Earth–Moon
system are of great interest, because their unique positions are
advantageous for several important applications in space mission
design (see, e.g., Szebehely [15], Farquhar [16], Roy [17], Vonbun
[18], Thurman and Worfolk [19], Gómez et al. [20,21], Breakwell
and Brown [22], Richardson [23], Howell [24], and Howell and
Marchand [25]). Such orbits cannot be maintained without active
control due to their instability (see Breakwell and Brown [22],
Richardson [23], Howell [24], andHowell andMarchand [25]). If the
orbit maintains visibility from Earth, a spacecraft on it (near the L2

point) can be used to provide communications between the equatorial
regions of the Earth and the lunar poles. Moreover, if another com-
munications satellite is located at the L1 point, there could be con-
tinuous communications coverage between the equatorial region of
the Earth and the entire lunar surface (see Farquhar [26] and Farquhar
and Kamel [27]).

This paper investigates displaced periodic orbits at a linear order
in the circular restricted Earth–Moon system, for which the third
massless body uses a hybrid of a solar sail and an SEP system. In
particular, periodic orbits in the vicinity of the Lagrange points in
the Earth–Moon system will be explored, along with their appli-
cations. First, we describe the dynamic model of the hybrid sail. The
first-order approximation is derived for the linearized equations of
motion. Then, a feedback linearization control scheme (see Slotine
and Li [28]) is proposed and implemented. The main idea of this
approach is to cancel the nonlinearities and to impose desired linear
dynamics satisfied by the solar sail. We then select the SEP control,
which takes into consideration the nonlinearity cancellation and the
stabilizing linear control. When the control is applied to the non-
linear system, asymptotic stability is achieved. This provides the key
advantage that the displacement distance of the hybrid sail is then
constant. A constant displacement distance of 1750 km has been
considered for the simulations. The displaced orbits found by
Ozimek et al. [5] show large excursions in the displacement
distance. In practice, a constant displacement distance may lead to
easier tracking from the lunar surface for communications appli-
cations. Finally, we evaluate the performance of the hybrid sail
approach.

II. System Model

In this work, m1 represents the larger primary (Earth) and m2

represents the smaller primary (Moon), and we will be concerned
with the motion of a hybrid sail that has negligible mass. It is always
assumed that the two more massive bodies are moving in circular
orbits with constant angular velocity! about their common center of
mass, and the mass of the third body is too small to affect the motion
of the twomore massive bodies. The unit mass is taken to be the total
mass of the system �m1 �m2�, and the unit of length is chosen to be
the constant separation R? between m1 and m2. The time unit is
defined, such that m2 orbits around m1 in time 2�. Under these
considerations, the masses of the primaries in the normalized system
of units arem1 � 1 � � andm2 � �, with ��m2=�m1 �m2� (see
Fig. 1a). Thus, in the Earth–Moon system, the nondimensional unit
acceleration is aref � !2R? � 2:7307 mm=s2, where the Earth–
MoondistanceR? � 384; 400 km. The dashed line in Fig. 1a is a line
parallel to the Sun-line direction.
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A. Equations of Motions

The nondimensional equation ofmotion of a hybrid sail [14] in the
rotating frame of reference is described by

d2r

dt2
� 2! � dr

dt
�rU�r� � aS � aSEP (1)

where !� !ẑ (ẑ is a unit vector pointing in the direction z) is the
angular velocity vector of the rotating frame and r is the position
vector of the hybrid sail relative to the center of mass of the two
primaries. We will not consider the small annual changes in the
inclination of the Sun linewith respect to the plane of the system. The
three-body gravitational potential U�r�, the solar radiation pressure
acceleration aS, and the nondimensional acceleration due to the SEP
thruster aSEP are defined by

U�r� � �
�
1

2
j! � rj2 � 1 � �

r1
� �
r2

�
; aS � a0�S � n�2n (2)

a SEP � aSEPm (3)

where�� 0:1215 is the mass ratio for the Earth–Moon system. The
hybrid sail position vectors with regard to m1 and m2, respectively
(see Fig. 1a), are r1 � 	x� �; y; z
T and r2 � 	x � �1 � ��; y; z
T ;
a0 is the magnitude of the solar radiation pressure acceleration
exerted on the hybrid sail, and the unit vector n denotes the thrust
direction; aSEP is the acceleration from the SEP system, and the
unit vectorm denotes the thrust direction. A constant displacement
distance of 1750 km has been imposed, considering a characteristic
acceleration of a0 � 0:10 mm=s2 for the simulations. The sail is
oriented, such that it is always directed along the Sun line S and
pitched at an angle � to provide a constant out-of-plane force. The
unit normal to the hybrid sail surface n and the Sun-line direction are
given by

n � 	 cos��� cos�!?t� � cos��� sin�!?t� sin��� 
T (4)

S � 	 cos�!?t� � sin�!?t� 0 
T (5)

where!? � 0:923 is the angular rate of the Sun line in the corotating
frame in a dimensionless synodic coordinate system.

B. Linearized System

We now want to investigate the dynamics of the hybrid sail in the
neighborhood of the libration points. We denote the coordinates
of the equilibrium point as rL � �xLi ; yLi ; zLi�, with i� 1; � � � ; 5.
Let a small displacement in rL be �r, such that r! rL � �r. The
equations for the hybrid sail can then be written as

d2�r

dt2
� 2! � d�r

dt
�rU�rL � �r�

� aS�rL � �r� � aSEP�rL � �r� (6)

and retaining only the first-order term in �r� 	�x; �y; �y
T in a
Taylor series expansion, the gradient of the potential and the acceler-
ation can be expressed as

rU�rL � �r� � rU�rL� �
@rU�r�
@r

����
r�rL

�r�O��r2� (7)

a S�rL � �r� � aS�rL� �
@aS�r�
@r

����
r�rL

�r�O��r2� (8)

a SEP�rL � �r� � aSEP�rL� �
@aSEP�r�
@r

����
r�rL

�r�O��r2� (9)

It is assumed that rU�rL� � 0, and the accelerations aS and aSEP
are constant with respect to the small displacement �r, so that

@aS�r�
@r

����
r�rL
�0 (10)

@aSEP�r�
@r

����
r�rL
�0 (11)

The linear variational system associated with the libration points
at rL can be determined through a Taylor series expansion by sub-
stituting Eqs. (7–9) into Eq. (6), so that

d2�r

dt2
� 2! � d�r

dt
� K�r� aS�rL� � aSEP�rL� (12)

where the matrix K is defined as

K ��
�
@rU�r�
@r

����
r�rL

�
(13)

Using matrix notation, the linearized equation about the libration
point [Eq. (12)] can be represented by the inhomogeneous linear

system _X� AX� b�t�, where the state vectorX� ��r; �_r�T and for
which b�t� (a 6 � 1 vector) is equal to the sum of the control
accelerations of the sail and the SEP.
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Fig. 1 System model: a) schematic geometry of the hybrid sail in the Earth–Moon circular restricted three-body problem; and b) angle � between the

hybrid sail surface normal n and the Sun-line direction S, and SEP thrust vector direction m.
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The Jacobian matrix A has the general form

A� 03 I3
K �

� �
(14)

where I3 is an identity matrix, and

��
0 2 0

�2 0 0

0 0 0

0
@

1
A (15)

By making the transformation r! rL � �r and retaining only the
first-order term in �r� ��; �; ��T in a Taylor series expansion where
��; �; �� are axes attached to the libration point (as shown in Fig. 1a),
the linearized nondimensional equations of motion relative to the
colinear libration points can be written as

�� � 2 _� � Uo
xx�� a� � aSEP� (16)

��� 2 _� � Uo
yy�� a� � aSEP� (17)

�� � Uo
zz�� a� � aSEP� (18)

whereUo
xx,U

o
yy, andU

o
zz are the partial derivatives of the gravitational

potential evaluated at the colinear libration point, and the solar sail
acceleration is defined in terms of three auxiliary variables a�, a�,
and a�.

Again, the sail attitude is fixed, such that the sail normal vector n,
which is the unit vector that is perpendicular to the sail surface,
always points along the direction of the Sun line with the following
constraint: S � n � 0. Its direction is described by the pitch angle �
relative to the Sun line, which represents the sail attitude.

Substituting Eqs. (4) and (5) into Eq. (2), the solar sail acceleration
components are therefore given by

a� � a0 cos�!?t�cos3��� (19)

a� ��a0 sin�!?t�cos3��� (20)

a� � a0cos2��� sin��� (21)

where a0 is the characteristic acceleration. The SEP acceleration
components aSEP are used for feedback control as described later.

By taking aSEP � 0 (pure sail at linear order), Eqs. (16–18) have a
simple periodic solution with a constant out-of-plane displacement
of the form:

��t� � �0 cos�!?t� (22)

��t� � �0 sin�!?t� (23)

��t� � �0 (24)

By inserting Eqs. (22) and (23) into the differential Eqs. (16) and
(17), with aSEP � 0, we obtain the linear system in �0 and �0:

�Uo
xx � !2

?��0 � 2!?�0 � a0cos3���
� 2!?�0 � �Uo

yy � !2
?��0 ��a0cos3��� (25)

Then, the amplitudes �0 and �0 are given by

�0 � a0
�Uo

yy � !2
? � 2!?�cos3���

�Uo
xx � !2

?��Uo
yy � !2

?� � 4!2
?

(26)

�0 � a0
��Uo

xx � !2
? � 2!?�cos3���

�Uo
xx � !2

?��Uo
yy � !2

?� � 4!2
?

(27)

and we have the equality

�0
�0
�

!2
? � 2!? � Uo

yy

�!2
? � 2!? �Uo

xx

(28)

Then, with condition (28), Eqs. (22–24) will be used as a reference
trajectory for the control analysis in the following sections. By
applying a Laplace transform, the uncoupled out-of-plane � motion
defined by Eq. (18) can be expressed as (see Simo andMcInnes [29]
for a detailed description)

�0 � a0cos2��� sin���jUo
zzj�1 (29)

Furthermore, the out-of-plane distance can be maximized by an
optimal choice of the sail pitch angle, determined by

d

d�
cos2��� sin���

����
���?
�0 (30)

�? � 35:264 deg (31)

III. Tracking by Feedback Linearization

A. Description

Linearization by feedback is a well-known approach to control
nonlinear systems. This method transforms a nonlinear state-space
model into a new coordinate system, for which the nonlinearities can
be cancelled by feedback. It is a way of transforming system models
into equivalent models of simpler form. For example, a change of
variables Z���X� is used to transform the state equation from the
X coordinates to the Z coordinates, for which the map ��:� must be
invertible, such that X���1�Z� for Z 2 ��D�, where D is the
domain of �. Furthermore, the derivatives of X and Z should be
continuous, and therefore the map � and its inverse ��1�:� are
continuously differentiable. Such amap is a diffeomorphism and can
be viewed as a generalization of the coordinate transformation.

B. Objectives

Given the nonlinear system �X� f�X; _X� � u, the problem of
feedback linearization consists of finding, if possible, a change of
coordinates of the formZ���X� and a static state feedback control
u� �X; ��, such that the new control input � satisfies a linear time-

invariant relation _Z� AZ� B�, where the pair �A; B� is con-
trollable. This technique is completely different from a Jacobian
linearization, on which linear control is based. From Eq. (1), the
motion of the hybrid solar sail in the circular restricted three-body
problem (CRTBP) is described by the scalar equations in the form:

��� 2 _�� �xLi � �� � �1 � ��
�xLi � �� � �

r31

� �
�xLi � �� � 1� �

r32
� a� � u� (32)

����2 _�� � �
�
1 � �
r31
� �
r32

�
�� a� � u� (33)

����
�
1 � �
r31
� �
r32

�
�� a� � u� (34)

where the vector

u �t� � 	u� u� u� 
T (35)

is the applied control acceleration due to the SEP thruster, such that

u�t�≜ aSEP.
To develop a feedback linearization scheme, the motion of the

hybrid solar sail moving in the CRTBP is separated into linear and
nonlinear components, such that
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��� f�Nonlinear � f
�
Linear � a� � u� (36)

��� f�Nonlinear � f
�
Linear � a� � u� (37)

��� f�Nonlinear � f
�
Linear � a� � u� (38)

where thef functions are defined as the linear and the nonlinear terms
in Eqs. (32–34)

f�Nonlinear ���1 � ��
�xLi � �� � �

r31
� �
�xLi � �� � 1� �

r32

f�Linear � 2 _�� �xLi � ��; f�Nonlinear ��
�
1 � �
r31
� �
r32

�
�

f�Linear ��2 _�� �; f�Nonlinear ��
�
1 � �
r31
� �
r32

�
�

f�Linear � 0 (39)

with r1 �
�������������������������������������������������������
	�xLi � �� � �
2 � �2 � �2

q
and r2����������������������������������������������������������������

	�xLi � �� � 1� �
2 � �2 � �2
q

.

The solar sail acceleration components are given in Eqs. (19–21).
We then select the SEP control u�t�, such that

u �t� �
u�
u�
u�

2
4

3
5� U�t� � ~u�t� (40)

where

U �t���
�xL2 � �� � �1���

�xL2�����
r3
1

�� �xL2����1��
r3
2

�Uo
xx�

��1��
r3
1

� �

r3
2

���Uo
yy�

��1��
r3
1

� �

r3
2

���Uo
zz�

2
664

3
775

(41)

is the canceling term, and ~u�t� is the stabilizing term.
The Eqs. (32–34) then become

��� 2 _��Uo
xx�� a0 cos�!?t�cos3��� � ~u� (42)

����2 _��Uo
yy� � a0 sin�!?t�cos3��� � ~u� (43)

���Uo
zz�� a0cos2��� sin��� � ~u� (44)

By removing the nonlinear dynamics from the system, the control
acceleration vector ~u�t� is determined, such that the desired response
characteristics of the linear time-invariant dynamics are produced,
and so Eqs. (42–44) are identical to the linear system defined by
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Fig. 2 Evaluation of hybrid sail performance: a) acceleration derived from the solar sail about the L2 point, and b) acceleration derived from the SEP

thruster about the L2 point.
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Eqs. (16–18). In particular, it can be ensured that the displacement
distance of the periodic orbit is constant, which provides key
advantages for lunar polar telecommunications.

IV. Tracking a Reference Trajectory

A. Linear Feedback Control

Let us consider a nonlinear system described by

�x� f�x; _x� � u (45)

where x 2 R3 is the position. Let e�t� � x�t� � xref�t� denote the
position error relative to some reference solution, for which the
reference trajectory

x ref�t� � 	 �ref �ref �ref 
T (46)

is given by the analytical solution

�ref�t� � �0 cos�!?t� (47)

�ref�t� � �0 sin�!?t� (48)

�ref�t� � �0 (49)

We then differentiate e�t� until the control appears, so that

e �t� � x�t� � xref�t� (50)

_e�t� � _x�t� � _xref�t� (51)

�e�t� � �x�t� � �xref�t� (52)

� f�x; _x� � u � �xref�t�

� ��1 _e � �2e

and so, we have

u �t� � �f�x; _x� � �xref�t� � �1 _e � �2e (53)

where

f�
f�Nonlinear
f�Nonlinear
f�Nonlinear

2
4

3
5 (54)

and ��1 _e � �2e is the stabilizing term.

B. Trajectory Tracking

Consider the system given by Eq. (45), for which our objective is
to make the output x 2 R3 track a desired trajectory given by the
reference trajectory xref 2 R3 while keeping the position bounded.
Therefore, we want to find a control law for the input ~u 2 R3, such
that starting from any initial position in a domain D � R3, the
tracking error e�t� � x�t� � xref�t� goes to zero. Hence, asymptotic
tracking will be achieved if we design a state feedback control law to
ensure that e�t� is bounded and converges to zero as t tends to infinity.
Thus, the control law

~u���1 _e � �2e (55)

yields the tracking error equation

�e� �1 _e� �2e� 0 (56)

where �1 and �2 are chosen positive constants.

V. Evaluation of Hybrid Sail Performance

A. Evaluation

In this section, we investigate the performance of the hybrid sail
system, constituted by a solar sail combined with SEP. The simul-
ation was performed around the colinear libration point L2 for a
period of one month. Thus, the control acceleration effort U�t�
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Fig. 3 Position error components [a), b), and c)] about the L2 point with e�0� � �28:26; � 552:52; 175�T km, respectively (critically damped motion).
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required to track the reference orbit while rejecting the nonlinearities
varies up to 0:014 mm=s2 about the L2 point. The control acceler-
ations are continuous smooth signals. The acceleration derived from
the solar sail (denoted by a�, a�, and a�) is plotted in terms of
components for one-month orbits (in Fig. 2a) about L2, and the SEP
acceleration components appear (in Fig. 2b) about L2. The control
acceleration effort derived from the thruster (denoted byU�,U�, and
U�) is of the order of 10

�3–10�4 mm=s2, whereas the acceleration
derived from the solar sail is approximately 10�2 mm=s2. The small
control acceleration from the SEP thruster is then applied to ensure
that the displacement of the periodic orbit is constant. The solar sail
provides a constant out-of-plane force. Figure 3 (critically damped
motion) illustrates the position error components, denoted by e�, e�,
and e� under the nonlinear control and the SEP thruster around L2.
These figures show that the motion is bounded and periodic. This
observation implies that the augmented thrust acceleration ensures a
constant displacement orbit.

The parameters of the reference trajectory (about L2) used for
the simulations are summarized as follows: �0 � 282:613 km,
�0 ��5525:23 km, �0 � 1750 km, and a0 � 0:10 mms�2.

B. Propellant Usage

Propellant usage for the SEP thruster is proportional to the total
�V, which is the integration over the time of the magnitude of the
control acceleration produced by using the SEP thruster, so that

�V �
Z

2�=!?

0

juj dt (57)

The total �VTotal over a 5 year mission is given by

�VTotal ��V per orbit � no (58)

where no is the total number of orbits. Once the total �V is com-
puted, the propellant usage can be found using the rocket equation.

Let us define the massm of the system at a time t, as a function of
the initial massmi,�V and the effective exhaust velocity ve � Isp � g

m�mie
��V=g�Isp (59)

The mass of propellant is then the difference between the initial and
the final masses:

mprop �mi �m�mi�1 � e��VTotal=g�Isp� (60)

where Isp is the specific impulse (�3000 s for an electric thruster).
Assuming a specific impulse of Isp � 3000 s and an initial mass of

mi � 500 kg, we have the average �V per orbit of approximately
23 m=s formotion aboutL2. Then, the total�V per orbit over 5 years
is 1536 m=s. The consumed propellant mass is then mprop � 25 kg.
The parameters are summarized in Table 1.

VI. Conclusions

A hybrid concept for displaced periodic orbits in the Earth–Moon
system has been developed. A feedback linearization was used to
perform stabilization and trajectory tracking for the nonlinear sys-
tem. The idea of this control is to transform a given nonlinear system
into a linear system by use of a nonlinear coordinate transformation
and nonlinear feedback. The augmented thrust acceleration is then
applied to ensure a constant displacement periodic orbit, which
provides key advantages for lunar polar telecommunications. A
stabilizing approach is then introduced to increase the damping in

the system and to allow a higher gain in the controller. Theoretical
and simulation results show good performance, with modest
propellant mass requirements.
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